Calculated Properties of PS₂⁺ and PS₃⁻

Pekka Pyykkö

Department of Chemistry, University of Helsinki, Et. Hesperiankatu 4, 00100 Helsinki, Finland

The linear S=P=S⁺ form of the recently studied PS₂⁺ ion lies below the triangular one in energy; the calculated frequencies for the trithiometaphosphate anion, $PS_3^-(D_{3h})$ support its experimental identification in high-temperature melts and in (AsPh₄)PS₃.

New, simple A \equiv B, A=B=C or AB₃ (D_{3h}) inorganic ions can still be found. An example is the PBP³⁻ ion, predicted¹ and prepared² independently. To study them, normal HF *ab initio* calculations on the free ion were shown to be meaningful, both for the bond lengths and for the vibrational frequencies, down to trivalent anions.³

In addition to the 3rd-row ions with either P¹ or S⁴ we here consider the mixed ions PS_n, among which the species PS₂⁺ and PS₃⁻ are of recent experimental interest. The well characterized PS^{+ 5,6} and PS₄^{3-7,8} are included as checks. PS₂⁺ has just been studied by mass spectroscopy^{9,10} but its structure and vibrational properties are unknown. PS₃⁻ has

Table 1. Calculated geometries (pm) and vibrational frequencies (cm⁻¹).^a

Species								
ABC	Method	d/(A-B)	d/(B-C)	\mathbf{v}_1	\mathbf{v}_2	v_3	ν_4	Ref.
PS+	HF	179.2		984				b
	MP2	186.1		787				b
	MP3	182.8						b
	CI	187.2		873.9				6
	Exp.	<u> </u>		844.6				5
SPS+	HF	181.9		619	118	1028		b
	MP2	186.9		548	79	1018		b
SSP+	HF	215.6	198.4°	439	462	759		b
	MP2	226.0	200.0 ^d					b
PS ₃ -	HF	194.9		516	300	749	259	b
	HF	196						12
	MP2	196.0						b
	Exp.			476	540	695	242	11
	Exp.			486	614	670	242	12
PS4 ³⁻	HF	210.0		406	186	567	274	b
	Exp.	205		416	215	548	270	7,8

 ${}^{a} D_{\infty h}: \nu_{1}(\sigma_{g}), \nu_{2}(\pi), \nu_{3}(\sigma_{u}). D_{3h}: \nu_{1}(a_{1}'), \nu_{2}(a_{2}''), \nu_{3}(e'), \nu_{4}(e'). T_{d}: \nu_{1}(a_{1}), \nu_{2}(e), \nu_{3}(t_{2}), \nu_{4}(t_{2}). {}^{b} This work. {}^{c} S-S-P = 57.11^{\circ}. {}^{d} S-S-P = 55.59^{\circ}.$

been tentatively identified in high-temperature melts by Raman spectroscopy.¹¹ The compound (AsPh₄)PS₃ has been made.¹² Experimental IR frequencies but no P–S distance and a theoretical, *ab initio* distance but no frequencies were reported. The PS₃⁻ ion was found to rotate. Thus the present calculated frequencies provide support for the experimental identification of PS₃⁻ in both the melts and the tetraphenylarsonium salt.

The Hartree–Fock- or Møller–Plesset-level 6-31G* calculations were performed using Gaussian 88. As seen from Table 1, the HF and MP2 results bracket the experimental v_e for PS⁺. The HF values for thiophosphate also are close to experiment, as usual. The semiempirical calculations on PS₂⁺ gave much shorter bond lengths for SP5⁺ and SSP⁺.¹³ The linear SSP⁺ bends spontaneously to a triangular geometry, lying -0.092 and 0.436 eV above the linear symmetric ion in HF and MP2, respectively. For the isoelectronic PPS,¹⁴ the triangular form was slightly more stable than the linear one. The analogous O=P=O^{+ 1} is still experimentally unknown.

Three of the four frequencies of PS_3^- agree with the calculated ones. The exception is the $v_2(a_2'')$, calculated to be at 300 cm⁻¹ and experimentally assigned to the weak, broad line at 540 or 614 cm^{-1.11,12} Otherwise this calculation supports the experimental evidence for PS_3^- in molten $Tl_2P_2S_6$, its solution in alkali bromide melts,¹¹ and in the tetraphenylarsonium salt.¹² These are the only observations of trithiometaphosphate.

The calculations were carried out on a Cray X-MP EA/432

computer at the Centre for Scientific Computing at Espoo, Finland. Mr. Raimo Uusvuori helped to sort out a convergence difficulty.

Received, 27th February 1990; Com. 0/00900H

References

- 1 P. Pyykkö and Y.-F. Zhao, Mol. Phys., 1990, 00, 000.
- 2 G. von Schnering, M. Somer, M. Hartweg, and K. Peters, *Angew. Chem.*, 1990, **102**, 63.
- 3 P. Pyykkö and Y.-F. Zhao, J. Phys. Chem., 1990, 00, 0000.
- 4 P. Pyykkö, Chem. Phys. Lett., 1989, 162, 349.
- 5 K. P. Huber and G. Herzberg, 'Constants of Diatomic Molecules,' Van Nostrand, New York, 1979.
- 6 S. P. Karna, P. J. Bruna, and F. Grein, Chem. Phys., 1988, 123, 85.
- 7 A. F. Wells, 'Structural Inorganic Chemistry.' 5th edn., Clarendon, Oxford, 1984.
- 8 A. Müller, N. Mohan, P. Cristophliemk, I. Tossidis, and M. Dräger, Spectrochim. Acta, Part A, 1973, 29, 1345.
- 9 G. J. Penney and G. M. Sheldrick, J. Chem. Soc. A, 1971, 243.
- 10 H. Keck, W. Kuchen, H. Renneberg, J. K. Terlouw, and H. C. Visser, Chem. Ber., 1989, 122, 2265.
- 11 R. Becker and W. Brockner, Z. Nanurforsch., Teil A, 1984, 39, 1120.
- 12 H. W. Roesky, R. Ahlrichs, and S. Brode, Angew. Chem., 1986, 98, 91.
- 13 J. R. Bews and C. Glidewell, Theochem., 1982, 3, 217.
- 14 T. Busch and W. W. Schoeller, Z. Physik D, 1989, 13, 289.